Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Feng Xie

Feng Xie

Tsinghua University, China

Title: Recent research progress about the source term study on irradiated graphite spheres of HTR-10

Biography

Biography: Feng Xie

Abstract

The very high temperature gas cooled reactor system (VHTR), as a development of high temperature gas-cooled reactors (HTGRs), has been identified as a candidate of the generation IV systems for the production of process heat, electricity and hydrogen. For the pebble bed high temperature gas cooled reactor, the performance of the fuel spheres in the core plays a crucial role with regard to nuclear safety. The nuclides produced in the core are the original source of radioactive substances into primary coolant and auxiliary
systems in a nuclear power plant. Thus, the determination of the source term in the reactor core can supply important information to understand the behavior of fission and activation products and provide reliable foundation to evaluate the radiation level of the nuclear facility. With previous developed experimental methods which include the preparation and measurement process for the graphite sample, four irradiated graphite spheres from the reactor core of the 10 MW high temperature gas-cooled reactor (HTR-10) have been investigated experimentally. The total β counting rate, the β spectra and the γ spectra for each graphite sample of irradiated graphite spheres were recorded with a total α/β counting measuring apparatus, a liquid scintillation counter and a highpurity germanium detector connected to a multichannel analyzer, respectively. The types of key nuclides in the irradiated graphite sphere of HTR-10 were determined, which were H-3, C-14, Co-60, Cs-137, Eu-152 and Eu-154. The distributions for each nuclide in four irradiated graphite spheres were compared. The generation mechanisms of H-3, C-14, Co-60, Cs-137, Eu-152 and Eu-154 in the irradiated graphite sphere of HTR-10 were discussed and analyzed. A sensitivity analysis was performed to explain the effect of the content of impurities and fraction of natural uranium contamination on the specific activity of key nuclides in the graphite spheres. Current study on irradiated graphite spheres of HTR-10 can provide valuable information for the source term analysis, waste minimization and radiation protection of high temperature gas-cooled reactors (HTGRs).